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Mutations of UFD1L Are Not Responsible for the
Majority of Cases of DiGeorge Syndrome/
Velocardiofacial Syndrome without Deletions within
Chromosome 22q11

To the Editor:
Deletions of chromosome 22q11 are associated with
a wide spectrum of congenital malformation, encom-
passed by the acronym “CATCH22” (cardiac defects,
abnormal facies, thymic hypoplasia, cleft palate, and hy-
pocalcemia on chromosome 22), including velocardio-
facial syndrome (VCFS; MIM 192430), DiGeorge syn-
drome (DGS; MIM 188400), and conotruncal-anomaly
face (Emanuel et al. 1998). The major anomalies include
outflow-tract congenital heart defects, hypoplasia of the
parathyroids and thymus, craniofacial dysmorphism,
and learning/behavioral problems (Ryan et al. 1997).
Many of these are thought to be due to a defective
neural-crest contribution during development. The
DiGeorge chromosomal region (DGCR) is entirely
cloned (Carlson et al. 1997) and sequenced, and several
genes have been reported mapping to the region. Mu-
tation screens of genes mapping to the proximal end of
this region, termed the “minimal DiGeorge chromoso-
mal region” (MDGCR; Gong et al. 1996), have been
negative (Wadey et al. 1995; Gong et al. 1997; Gottlieb
et al. 1997; Lindsay et al. 1998). Attention therefore has
turned to the regions adjacent and distal to the MDGCR.
Recently, the gene UFD1L was proposed as the major
gene haploinsufficient in this group of syndromes (Ya-
magishi et al. 1999). UFD1L is downstream of dHAND,
a gene known to be involved in control of the devel-
opment of structures affected in DGS, and Ufd1l is ex-
pressed in the branchial arches, frontonasal mass, and
outflow tract. In addition, a single patient has been re-
ported with a de novo deletion affecting UFD1L and
the neighboring gene, CDC45L2 (Yamagishi et al.
1999). CDC45 is required for initiation of DNA repli-
cation in yeast, and CDC45 mutants are nonviable.
However, CDC45L2 expression is not altered in d-
HAND �/� embryos. On the basis of these findings,
Yamagishi and colleagues concluded that UFD1L hap-

loinsufficiency (perhaps with some contribution from
CDC45L2) causes DGS.

We conducted mutation screens, in both UFD1L and
CDC45L2, as a three-center collaboration. UFD1L was
screened by direct sequencing of 12 patients in London,
by direct sequencing of all exons and 900 bp of the 5′

UTR in 20 patients in Rome, and by DGGE of 7 patients’
DNA in Rotterdam. Local ethical review and consenting
procedures were followed. The majority of patients were
chosen on the basis of the presence of two or more
features of the 22q11 deletion syndromes, but with no
detectable deletion of 22q11 or of the DGSII region of
10p13 (Daw et al. 1996). The Rome series contained
six patients with an isolated (i.e., nonsyndromic) inter-
rupted aortic arch, a congenital heart defect commonly
associated with the deletion. These patients were in-
cluded because point mutations may be associated with
a narrower spectrum of malformation than deletion
and—since UFD1L was specifically identified as a d-
HAND target—because congenital heart defects might
be especially significant. The previously described pa-
tient with a balanced 2;22 translocation in association
with DGS (patient ADU; Augusseau et al. 1986) was
also screened. UFD1L primers and conditions are avail-
able from the collaborating centers, and the genomic
organization of UFD1L and the resources for exon PCR
amplification have been described elsewhere by Novelli
et al. (1998). In London, 24 patients were similarly
screened for CDC45L2 mutations; primers and PCR
conditions are available on request, and genomic or-
ganization has been published previously (McKie et al.
1998). No mutations of either gene were detected. We
did, however, detect a number of sequence variants.
Within the 5′UTR of UFD1L we found a single poly-
morphic sequence, initially detected by SSCP and sub-
sequently shown to involve an ArG transition, located
at the �277 position (with respect to the first base of
the initiation codon). Screening of 25 unrelated controls
generated a heterozygosity value of .40. Within
CDC45L2 we detected an ArG transition 22 bp up-
stream of exon 17 (at intron 16, with heterozygosity of
.3) and a GrT transversion 24 bp into intron 18 (het-
erozygosity of .5). In addition, Southern analysis of 42
patients was conducted, with four different restriction-
enzyme digests (HindIII, EcoRI, KpnI, and BamHI), in
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an attempt to ascertain rearrangements similar to the
UFD1L/CDC45L2 deletion reported elsewhere. This
analysis included all of the London patients screened for
point mutations, as well as an additional 18 patients.
No rearrangements or deletions were detected, although
four RFLPs were observed. Finally, mice with hemizy-
gous targeted mutations of Ufd1l were normal (A. Bal-
dini, personal communication).

Where does this leave the molecular genetics of the
22q11 deletion syndromes? Interpretation of current
data must consider that, although �10% of deletions
are inherited (Ryan et al. 1997), there is no good evi-
dence for inheritance of DGS/VCFS in nondeletion cases.
Furthermore, there are a large number of potential phe-
nocopies of the condition (Emanuel et al. 1998). It is
therefore possible that only a fraction of nondeleted
cases have an etiology related to chromosome 22q11.
Therefore, UFD1L must still be regarded as a good can-
didate for contributing to this complex multiple-mal-
formation syndrome. However, it should be kept in mind
that a number of genes might be acting to produce a
combined haploinsufficiency, especially since other genes
within the DGCR are also expressed in affected tissues.
In the case of HIRA, for instance, the protein is known
to interact with PAX3, a gene required for conotruncal
septation in the mouse (Magnaghi et al. 1998), and an-
tisense attenuation of HIRA expression in chicks yields
an increased incidence of persistent truncus arteriosus
(Farrell et al. 1999). However, as with UFD1L, muta-
tions within HIRA have not been detected. Another con-
sideration is the presence of distinct (i.e., nonoverlap-
ping) rearrangements of 22q11, associated with very
similar DGS-like phenotypes (Dallapiccola et al. 1996;
Kurahashi et al. 1996; Sutherland et al. 1996; Rauch et
al. 1999). Perhaps haploinsufficiency of more than one
gene can cause the syndrome, or long-range effects in-
duced by the rearrangements can down-regulate the ex-
pression of the relevant gene(s). The role of combina-
tions of genes during development is being tested by
chromosome engineering in the mouse (Lindsay and Bal-
dini 1998), although it is conceivable that long-range
effects will confuse analysis in the murine system. In
agreement with other commentators (Baldini 1999; Hag-
mann 1999), we think it is too early to call “Closing
Time” (Heller 1996) on “CATCH22” (Heller 1955).
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